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Abstract
We consider the exact renormalization group for a non-canonical scalar field
theory in which the field is coupled to the external source in a special nonlinear
way. The Wilsonian action and the average effective action are then simply
related by a Legendre transformation up to a trivial quadratic form. An exact
mapping between canonical and non-canonical theories is obtained as well as
the relations between their flows. An application to the theory of liquids is
sketched.

PACS numbers: 05.20.Jj, 64.60.ae

1. Introduction

During the last 20 years the Wilson approach [1] to the renormalization group (RG) has
been the subject of a revival in both statistical and quantum field theory and also, quite
independently, in the more restricted domain of the equilibrium statistical physics of classical
liquids.

In field theory two main formulations of the non-perturbative renormalization group
(NPRG) have been developed in parallel. In the first one, a continuous realization of the
RG transformation of the action Sk[ϕ] is made and no expansion is involved with respect to
some small parameter of this action. At scale-k (in momentum space) the high-energy modes
ϕ̃q , q > k, have been integrated out in the ‘Wilsonian’ action Sk which is a functional of the
slow modes ϕ̃q , q < k. This operation requires the implementation of some cut-off of the
propagator aiming at separating slow (q < k) and fast (q > k) modes. The flow of the action
is governed either by the Wilson–Polchinski equation [1–3] in the case of a smooth cut-off
or the Wegner–Houghton [4] equation in the case of a sharp cut-off. These equations, due
to their complexity, call for the use of approximation and/or truncation methods which have
been extensively studied in the last few years; we refer to the review of Bagnuls and Bervillier
[5] for a detailed discussion of this first version of the NPRG.

The second, more recent formulation, called the ‘effective average action’ approach, was
developed after the seminal works of Nicoll, Chang and Stanley for the sharp cut-off version
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[6, 7] and Wetterich, Ellwanger and Morris (WEM) for the smooth cut-off version [8–13].
This method implements on the effective average action �k[�]—roughly speaking the Gibbs
free energy of the fast modes �̃q, q > k of the classical field—rather than on the Wilsonian
action Sk , the ideas of integration of high-energy modes that underlie any RG approach. The
flow of �k results in equations which can be solved under the same kind of non-perturbative
approximations as those used for the Wilson–Polchinski or Wegner–Houghton equations. The
main advantage of this more recent formulation is that it gives access to the RG flow of
physical quantities, i.e. the Gibbs free energy �k[�] and the correlation functions as well,
rather than such a highly abstract object as the Wilsonian action. Recent reviews and lectures
devoted to this second approach are available [14, 15] and should be consulted for a thorough
discussion. These two versions of the RG are in fact equivalent; this not so obvious equivalence
is discussed in detail by Morris in a beautiful paper [13].

As can be tracked back in the literature, the ‘effective average action’ approach of the RG
was in fact discovered independently by Parola and Reatto in the framework of the theory of
liquids nearly 25 years ago; they considered both the sharp and the soft cut-off formulation
of the so-called hierarchical reference theory (HRT) [16–18]; a review article describes their
early achievements [19] and several papers describing new developments of the soft cut-off
version of HRT appeared recently [20, 21].

Some years ago it was realized that a statistical field description of liquids was possible
and the so-called KSSHE theory of liquids (after the names of Kac, Siegert, Stratonovich,
Hubbard and Edwards [22–26]) was introduced and developed in [27–32]. In [33] it was
shown that the WEM equations for KSSHE field theory are identical to HRT equations in the
sharp cut-off limit. There are however differences for the soft formulations and a picture of
the RG of liquids in terms of a Wilsonian action does not emerge obviously from these early
attempts.

A close inspection of KSSHE theory reveals that it is not an ‘ordinary’ or ‘canonical’
field theory in the sense that the coupling between the scalar ‘internal’ field and the ‘external’
source, in this particular case the chemical potential, is nonlinear. So it is slightly at variance
with the usual formulations of field theory where a linear coupling is adopted in general. It
turns out that the full RG construction is much easier for a KSSHE-like theory than for a
canonical one. Therefore ideas pertaining to the theory of liquids can be exported to statistical
field theory, yielding important simplifications for the latter. Indeed the subtle reasonings
of Morris [13] can then be reproduced with a disarming simplicity by the introduction of a
‘reference’, non-Gaussian system; in this way we find that the Wilsonian action Sk and the
WEM action �k are related by a simple Legendre transformation (up to a trivial quadratic
form). This is the main result of this paper.

The paper is organized as follows. In section 2 we show how to build a non-canonical,
KSSHE-like field theory from a canonical one. We then follow Morris’s construction of the
RG in section 3, obtain the RG flows and discuss the interplay between the Wilson–Polchinsy
and WEM formulations of the renormalization group. The exact mapping onto a related
canonical theory is discussed in section 4. The full set of flow equations for the effective
vertices is then discussed in section 5 for the soft and sharp cut-off versions. Finally, in
section 6 we give an illustration for the theory of liquids and we conclude.

In order to simplify our discussions we have restricted ourselves to the case of bosonic
scalar field theories; extensions to more complicated cases are certainly possible. Moreover
we discuss here only the ‘first step’ of the RG program of Wilson, i.e. the blocking of the
action and we make no comments or digressions on the scaling properties of the solutions
of NPRG equations near a fixed point; specialists are still at variance on this point, see,
e.g. [34].
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2. A non-canonical statistical field theory

To simplify the discussion let us consider a ‘reference’ (R) system described by a standard
scalar field theory. Other representations or generalizations are easy to deal with, as illustrated
in section 6 where the case of the theory of liquids is briefly evoked. The physics of the
R-system, i.e. its thermodynamics and correlation functions, is supposed to be known exactly;
it is encoded in the functional [35, 36]

ZR[J ] =
∫

Dχ exp(−SR[χ ] + J · χ), (1)

where J (x) is an external source and the action SR[χ ] is an arbitrary functional of the real
scalar field χ ; notably SR[χ ] might comprise terms linear or quadratic in χ . In (1) J · χ is a
short-cut for

∫
x
J (x) · χ(x) where

∫
x

≡ ∫ ddx and d the space dimensions.
We denote by WR[J ] = ln ZR[J ] the Helmholtz free energy functional. As well known

ZR and WR are the generators of ordinary and connected correlation functions which will be
written as

Z
(n)
R (J ; 1, 2, . . . , n) = 1

ZR

δnZR

δJ (1) · · · δJ (n)
, (2a)

W
(n)
R (J ; 1, 2, . . . , n) = δnWR

δJ (1) · · · δJ (n)
, (2b)

where we used the uncluttered notations i ≡ xi .
From first principles WR[J ] is a convex functional of the source J (x). Its Legendre–

Fenchel transform �R[�], the reference Gibbs free energy, is therefore also a convex functional
of the classical field �(x). We thus have

�R[�] = sup
J

(J · � − WR[J ]), (3a)

WR[J ] = sup
�

(J · � − �R[�]), (3b)

from which we deduce Young inequalities

�R[�] + WR[J ] � J · � (∀�,∀J ), (4)

which may be used to obtain rigorous bounds (see, e.g., appendix B).
It will prove useful to introduce the proper vertex functions of the R-system

�
(n)
R (�; 1, 2, . . . , n) = δn�R

δ�(1) . . . δ�(n)
. (5)

The Legendre–Fenchel transform (3) is more general than, but in the cases that will be
considered here equivalent to, the usual Legendre transform defined as

�R[�] + WR[J ] = J · �

{
∀� J(x) = �

(1)
R (�; x),

∀J �(x) = W
(1)
R (J ; x).

(6)

Our requirements concerning the properties of the R-system will be modest and fuzzy;
a reasonable assumption is that it is not at, or too close to a critical point, so that connected
correlation functions are short ranged and Taylor functional expansions about some arbitrary
field make sense. In practice ZR[J ] is of course not known exactly and will in general
result from some approximation, a high-temperature expansion for instance. The choice of
a Gaussian model for the R-system would obviously be either of little interest or a lack of
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ambition. At this point we introduce and want to study a family of models (referred to as
�-systems) labelled by � in momentum space and built as follows:

Z�[J ] =
∫

Dχ exp

(
−SR[χ ] +

1

2
χ · P �

0 · χ + J · χ

)
, (7)

where χ ·P �
0 ·χ ≡ ∫

x

∫
y
χ(x)P �

0 (x−y)χ(y), which can also be rewritten as
∫
q
P̃ �

0 (q)χqχ−q in

Fourier space where P̃ �
0 and χq denote the Fourier transforms of P �

0 (x) and χ(x) respectively,
finally

∫
q

≡ ∫ ddq/(2π)d . We assume that P �
0 is definite positive (i.e. P̃ �

0 (q) > 0). � acts as
an ultraviolet (UV) cut-off since

P̃ �
0 = P̃ 0(q)C

(
q

�

)
, (8a)

C(x) = 1 − 	ε(x − 1), (8b)

where 	ε(x) is a smoothened version of the step function 	(x), ε being the range of the interval
(−ε/2, ε/2) where 	ε(x) increases gently from 	ε = 0 to 	ε = 1. We will denote similarly
by δε(x) = ∂	ε(x)/∂x the smoothened version of Dirac distribution. Taking (carefully) the
limit ε → 0 yields the sharp cut-off version of the theory. In (8) P̃0(q) ∝ 1/(q2 + m2) is a
massive propagator, but we can find no reason why m2 could not be set to 0 if necessary. We
see that P̃ �

0 (q) ≈ P̃0(q) for q � � − ε and P̃ �
0 (q) ≈ 0 for q � � + ε. The UV cut-off �

may be understood as the scale at which the �-system is defined at a microscopic level; for
an Ising model typically � ≈ 1/a where a is the lattice spacing and for a fluid of molecules
of size σ,� ≈ 1/σ . Note that since a positive quadratic term has been subtracted from the
action SR the �-system can be tuned to a critical point.

We now take advantage of the positivity of operator P �
0 to perform a Hubbard–

Stratonovich transform [22–26] in (7) which yields

Z�[J ] = 1

NP �
0

∫
Dϕ exp

(
−1

2
ϕ · R�

0 · ϕ + WR [J + ϕ]

)
, (9a)

NP �
0

=
∫

Dϕ exp

(
−1

2
ϕ · R�

0 · ϕ

)
, (9b)

where R�
0 ≡ [P �

0

]−1
is the inverse of P �

0 in the sense of operators, i.e.∫
y

R�
0 (x, y)P �

0 (y, z) = δd(x − z).

The Hubbard–Stratonovich transform and other useful properties of Gaussian functional
integrals are reviewed in appendix A.

The field theory given by (9) is non-canonical in the sense that the coupling between
the external source J and the field ϕ is a nonlinear one. This kind of field theory appears
naturally in the statistical mechanics of simple fluids, the Ising model, etc after performing
a Hubbard–Stratonovich transform in order to introduce a field theory for the model under
consideration. The KSSHE theory of liquids is introduced and discussed in [27–32], some
of its salient features are reviewed in appendix B and additional comments are given in
section 6.
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3. The exact renormalization group

3.1. Blocking the action

We now apply the exact RG approach of Tim Morris [13] to our non-canonical field theory.
As a consequence of the Bogolioubov theorem (cf equation (A.7) in appendix A) the partition
function Z�[J ] can be rewritten in terms of two propagators and two fields as

Z�[J ] = 1

NP k
0

∫
Dϕ< exp

(
−1

2
ϕ< · Rk

0 · ϕ<

)
Z�

k [ϕ<, J ], (10a)

Z�
k [ϕ<, J ] = 1

NP �
k

∫
Dϕ> exp

(
−1

2
ϕ> · R�

k · ϕ> + WR [J + ϕ< + ϕ>]

)
, (10b)

where 0 � k � � is the running scale of the RG and where

ϕ = ϕ< + ϕ> and P �
0 = P �

k + P k
0 . (11)

In (10)–(11) we have separated the field ϕ into ‘rapid’ (ϕ>) and slow modes (ϕ<). The
low-energy modes are associated with the propagator P k

0 (with inverse Rk
0) which is cut-

off from above by k, while the high-energy modes are associated with the propagator P �
k

(with inverse R�
k ) which is cut-off from below by k and from above by �. We demand that

P̃ �
k (q) = P̃0(q)(C(q/�) − C(q/k)) should be positive and thus the cut-off function C(x)

must be a decreasing function of its argument which will be assumed henceforth.
As in the canonical case, the functional Z�

k [ϕ<, J ] is the crux of the whole matter since
it allows us to make explicit the link between the Wilsonian action and the effective average
action [13]. However here this link proves trivial since Z�

k [ϕ<, J ] is a functional of the single
variable ϕ< + J .

Let us first set J = 0 in (10). On the one hand we have

Z�
k [ϕ<, J = 0] � exp

(−S�
k [ϕ<]

)
(12a)

= 1

NP �
k

∫
Dϕ> exp

(
−1

2
ϕ> · R�

k · ϕ> + WR [ϕ< + ϕ>]

)
, (12b)

and on the other hand

Z�[J = 0] = 1

NP k
0

∫
Dϕ< exp

(
−1

2
ϕ< · Rk

0 · ϕ< − S�
k [ϕ<]

)
. (12c)

Equations (12) define the Wilsonian action S�
k [ϕ<] in the usual way, i.e. as the effective action

of the slow modes at scale k [1, 2, 13]. Here k plays the role of an UV cut-off.
Let us now set ϕ< = 0 in (10). It yields

Z�
k [ϕ< = 0, J ] � Z�

k [J ]
(

� exp
(
W�

k [J ]
) )

(13a)

= 1

NP �
k

∫
Dϕ> exp

(
−1

2
ϕ> · R�

k · ϕ> + WR [J + ϕ<]

)
, (13b)

which shows that W�
k [J ] is the Helmholtz free energy of the rapid modes ϕ> in the presence

of the source J ; therefore, here, k plays the role of an infra-red (IR) cut-off. We will see
in section 4 how W�

k [J ] may also be seen, in some sense, as the generator of connected
correlation functions with UV regularization, i.e. �, and IR cut-off, i.e. k.

5
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We also note that the partition function Z�
k [J ] can alternatively be written as a functional

integral over the field χ , i.e.

Z�
k [J ] =

∫
Dχ exp

(
−SR[χ ] +

1

2
χ · P �

k · χ + J · χ

)
. (13c)

A Hubbard–Stratonovich transform allows us, indeed, to obtain (13b) from (13c) in the same
way used to obtain (9) from the expression (7) of Z�.

As a trivial consequence of (13c) we note that W�
� [J ] = WR[J ] (since P �

� ≡ 0 as follows
from (11)) and W�

0 [J ] = W�[J ]. Another important consequence of (13c) is the convexity
of the functional W�

k [J ] which follows from the usual arguments [36, 38].
The two approaches of the RG, that of the Wilsonian action and that of the effective

average action, are here trivially related since

W�
k = −S�

k , (14)

from which we infer that

Z�
k [ϕ<, J ] = exp

(−S�
k [ϕ< + J ]

) = exp
(
W�

k [ϕ< + J ]
)
. (15)

When (15) is reported in (10) we get the illuminating expression

Z�[J ] = 1

NP k
0

∫
Dϕ< exp

(
−1

2
ϕ · Rk

0 · ϕ + W�
k [J + ϕ]

)
, (16)

which, when compared to equation (9), shows that W�
k can also be interpreted as a reference

Helmholtz free energy at scale k or as the Helmholtz free energy of the k-system to paraphrase
Parola and Reatto [18, 19].

3.2. Flow equations

3.2.1. The Helmholtz free energy W�
k . We first establish the flow equation for W�

k . It follows
from expression (13b) and the algebraic identity (A.8a) of appendix A that

exp
(
W�

k [J ]
) = exp

(
D�

k

)
exp(WR[J ]), (17)

where

D�
k ≡ 1

2

∫
x,y

P �
k (x, y)

δ

δJ (x)

δ

δJ (y)
. (18)

Taking partial derivatives of both sides of equation (17) with respect to k at fixed J (x) yields

∂kW
�
k [J ]|J = 1

2

∫
x,y

∂kP
�
k (x, y)

{
W

�(2)
k (x, y) + W

�(1)
k (x)W

�(1)
k (y)

}
. (19)

This flow equation must be supplemented by the initial condition W�
� = WR at k = �.

3.2.2. The Wilsonian action S�
k . Since W�

k = −S�
k the flow of S�

k is given by the usual
Wilson–Polchinski equation [3, 13]

∂kS
�
k [�]|� = 1

2

∫
x,y

∂kP
�
k (x, y)

{
S

�(2)
k (x, y) − S

�(1)
k (x)S

�(1)
k (y)

}
, (20)

to be supplemented with the initial condition S�
� = −WR at k = �.

6
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3.2.3. The effective average action ��
k . The ‘true’ Gibbs free energy of the k-system,

provisionally denoted as �
�

k , is defined as the Legendre transformation of W�
k [J ] and we thus

have the couple of relations

�
�

k [�] = sup
J

(
J · � − W�

k [J ]
)
, (21a)

W�
k [J ] = sup

�

(
J · � − �

�

k [�]
)
, (21b)

where both W�
k [�] and �

�

k [�] are convex functionals of their arguments. Then it follows

from stationarity that ∂k�
�

k [�]
∣∣
�

= −∂kW
�
k [J ]

∣∣
J

(∀J , provided that �(x) = δW�
k

/
δJ (x)

or, ∀�, provided that J (x) = δ�
�

k /δ�(x) [35]) from which we conclude that

∂k�
�

k [�]|� = 1

2

∫
x,y

∂kP
k
0 (x, y)

{
W

�(2)
k (x, y) + �(x)�(y)

}
, (22)

where we have used the fact that ∂kP
k
0 = −∂kP

�
k ; we would like to point out that W

�(2)
k is the

inverse of �
�(2)

k = �
�(2)
k + P k

0 so that (22) is closed. To get rid of the non-local term on the
right-hand side of the equation we are led to define the effective average action as

��
k [�] = �

�

k [�] − 1
2� · P k

0 · �. (23)

Note that ��
k [�] can be non-convex as long as k > 0 since the operator P k

0 is definite positive.
Obviously its flow equation takes the simple form

∂k�
�
k [�]|� = 1

2

∫
x,y

∂kP
k
0 (x, y)

{
�

�(2)
k + P k

0

}−1
(x, y) , (24)

which coincides with WEM equation. This equation must be supplemented with an initial

condition. From W�
� = WR it follows that �

�

� = �R and thus, from (23) we get

��
�[�] = �R[�] − 1

2� · P �
0 · �. (25)

At this point some comments are in order. First, it turns out that, as shown in appendix B,
expression (25) of ��

�[�] coincides with the mean field (MF), or tree level approximation for
the Gibbs potential ��[�], which we denote by ��

MF[�]. Therefore, as in the usual canonical
case, the RG flow drives the effective average action ��

k [�] from its MF value at k = �

to its exact value at k = 0 by integrating fluctuations of smaller and smaller wave numbers.
Moreover it is also shown in appendix B that

��
k [�] � ��

MF[�] ∀�(x), (26)

i.e. ��
MF[�] constitutes an exact upper bound for the effective average action.

Second comment: the arguments which led us to obtain equation (17) can also well be
applied to equations (9) and (16) which gives

exp(W�[J ]) = exp(Dk
0) exp(W�

k [J ]), (27a)

exp
(
W�

k [J ]
) = exp(D�

k ) exp(WR[J ]), (27b)

exp(W�[J ]) = exp(D�
0 ) exp(WR[J ]), (27c)

i.e. the nice semi-group law eD�
0 . . . = eDk

0 eD�
k . . . , which of course does not trivially follow

from D�
0 = Dk

0 + D�
k but in addition requires the ‘time ordering’ of operators eDk

0 and eD�
k as

well as the conditions 0 � k � �.

7
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3.3. Reparametrization invariance

We discuss briefly the reparametrization invariance of the theory; indeed, changing the UV
cut-off from � to some �′ � � should not change the physics at scale k provided the ‘new’
reference system is properly reparametrized at scale �′. We will do it for S and �, the two
faces of our Janus RG.

Let us choose some running wave number 0 � k � �′ � �. Recall that we have
e−S�

k = eD�
k e−SR with SR = −WR and we define S ′

R = S�
�′ . Obviously the semi-group law

eD�
0 . . . = eDk

0 eD�
k . . . which was proved to be valid for 0 � k � � in section 3.2.3 can be

generalized without problems to the triplet k � �′ � � (the fact that the smallest wavenumber
k = 0 in equations (27) plays no role) and therefore we have e−S�

k = eD�′
k eD�

�′ e−SR = e−S�′
k

with e−S�′
k = eD�′

k e−S ′
R . Therefore S�′

k = S�
k if the action of the new reference system is

indeed chosen to be S ′
R = S�

�′ ; this proves the reparametrization invariance for the Wilsonian
action S�

k .
We turn now our attention to the effective average action ��

k and give two derivations of
the reparametrization invariance as both are instructive. Since S = −W we have of course
W�′

k = W�
k and more generally W

�′(n)
k = W

�(n)
k . In particular the full propagators (n = 2)

are equal and we infer from the form of the flow equation (24) that ∂k�
�′
k [�] = ∂k�

�
k [�].

It remains to examine the initial condition for ��′
k [�] at k = �′. ��′

�′ [�] is given by
equation (25) i.e.

��′
�′ [�] = �′

R[�] − 1
2� · P �′

0 · �.

Since �′
R[�] = �

�

�′[�] (a direct consequence of S ′
R = S�

�′ = −W�
�′ ) it follows from

the very definition (23) that ��′
�′ [�] = ��

�′[�]. Integrating the flow equations thus yields
��′

k [�] = ��
k [�], i.e. the reparametrization invariance for the effective average action.

For a simpler proof we start from the reparametrization invariance for the Wilsonian

action. As S = −W we have W�′
k [J ] = W�

k [J ] from which �
�′

k [�] = �
�

k [�] by Legendre
transform. Then it follows from equation (23) that ��′

k [�] = ��
k [�]; it was therefore of the

utmost importance that the quadratic form subtracted from �
�

k [�] to define ��
k [�] did not

depend explicitly on the UV cut-off �.

4. Mapping on the canonical theory

4.1. The mapping

Commenting on equation (9) we already stressed the non-canonical functional dependence of
Z�[J ] upon the source J (x). This remark holds at any scale 0 � k � � and also applies to
the partition function Z�

k [J ] of the k-system. The k-independent change of variable

ϕ → ϕ = ϕ + J (28)

in equation (13) obviously allows a simple mapping on a canonical theory. We shall distinguish
by a superscript ‘*’ all the quantities pertaining to this canonical theory. Substituting ϕ for ϕ

in expression (13) of Z�
k [J ] readily yields

Z�
k [J ] = e− 1

2 J ·R�
k ·J Z�∗

k [J ∗], (29a)

where Z�∗
k [J ∗] reads as

Z�∗
k [J ∗] = 1

NP �
k

∫
Dϕ∗ exp

(
−1

2
ϕ∗ · R�

k · ϕ∗ + WR[ϕ∗] + J ∗ · ϕ∗
)

, (29b)

8
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and where the sources J and J ∗ are related by the simple linear relations

J ∗ = R�
k · J ⇔ J = P �

k · J ∗. (29c)

Z�∗
k [J ∗] is the standard or ‘canonical’ form of the partition function of the k-system.

One defines as usual the Helmholtz free energy as W�∗
k = ln Z�∗

k . The construction of
the Wilsonian action S�∗

k is worked out by means of a Bogolioubov transformation as in
section 3.1 and ��∗

k is obtained by a modified Legendre transform of W�∗
k . Details of the

derivations are to be found in the paper of Morris (cf [13]). We reproduce here only his key
results, rewritten however within our notations. First, one has (compare with equations (10))

Z∗
�[J ∗] = 1

NP k
0

∫
Dϕ∗

< exp

(
−1

2
ϕ∗

< · Rk
0 · ϕ∗

<

)
Z�∗

k [ϕ∗
<, J ∗], (30a)

Z�∗
k [ϕ∗

<, J ∗] = 1

NP �
k

∫
Dϕ∗

> exp

(
−1

2
ϕ∗

> · R�
k · ϕ∗

> + WR[ϕ∗
< + ϕ∗

>] · · · + J ∗ · (ϕ∗
< + ϕ∗

>)

)
.

(30b)

As in section 3.1 the two-fields functional Z�∗
k [ϕ∗

<, J ∗] is the key to the Janus temple. Making
J = 0 in (30) defines the Wilsonian action

Z�∗
k [ϕ∗

<, J ∗ = 0] = exp
(−S�∗

k [ϕ∗
<]
)
,

= exp
(
D�

k

)
exp

(
WR[ϕ∗

<]
)
, (31)

while letting ϕ∗
< = 0 defines the Helmholtz free energy

Z�∗
k [ϕ∗

< = 0, J ∗] = exp
(
W�∗

k [J ∗]
)
,

= exp
(

1
2J ∗ · P �

k · J ∗) exp
(
D�

k

)
exp(WR[J ∗]). (32)

Below we make explicit the mapping between all star and non-star quantities and compare
their RG flows.

4.2. W�
k [J ] and the Green functions

The canonical and non-canonical Helmholtz free energy therefore differ by a simple quadratic
form and we have, for example, for W�∗

k in terms of W�
k

W�∗
k [J ∗] = W�

k [J ] + 1
2J · R�

k · J, (33)

as follows either from equations (29a) or (32) which therefore are thus indeed equivalent.
W�∗

k [J ∗] is the generator of the connected correlation functions of field ϕ∗. Since ϕ and ϕ∗

differ by a constant (cf (28)) their connected correlations differ only at order n = 1 for which
〈ϕ∗〉 = 〈ϕ〉 + J . We shall denote �∗ ≡ W

�∗(1)
k = 〈ϕ∗〉 the order parameter and will adopt the

same notation for its non-star counterpart � ≡ W
�(1)
k although it could be misleading since,

in the non-canonical case, � �= 〈ϕ〉. Taking the functional derivative of both sides of (33) and
making use of the linear relations (29c) between the sources J and J ∗ leads to the relations

� = −J ∗ + R�
k · �∗, �∗ = J + P �

k · �. (34)

By performing successive derivatives of the above relations with respect either to J or to J ∗

one obtains easily the searched for relation between the two sets of Green functions

W
�∗(2)
k (1, 2) = P �

k (1, 2) + P �
k (1, 1′)P �

k (2, 2′)W�(2)
k (1′, 2′)

W
�∗(n)
k (1, . . . , n) = P �

k (1, 1′) · · · P �
k (n, n′)W�(n)

k (1′, . . . , n′) for n � 3,
(35)

where summation, i.e. space integration, over repeated indices (n ≡ xn) is meant (to unclutter
notations, the functional dependence of Green functions upon the sources J and J ∗ was not
displayed explicitly).

9
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4.3. The Wilsonian action S�
k

This one is easy; a serene contemplation of equations (31) and (12) should convince the reader
that

S�∗
k [�] = S�

k [�] (∀�). (36)

4.4. The effective average action ��
k

Recall that, in the canonical case, as we did in section 3, one first introduces the Legendre

transform �
�

k of the Helmholtz free energy

�
�∗
k [�∗]+W�∗

k [J ∗] = J ∗·�∗
{

∀�∗ J ∗ = δ�
�∗
k

/
δ�∗,

∀J ∗ �∗ = δW�∗
k

/
δJ ∗.

(37)

Recall that W�∗
k [J ∗] and �

�∗
k [�∗] are both convex functionals and that the (possibly non-

convex) effective average action ��∗
k [�∗] is defined as [10, 13, 14]

��∗
k [�∗] = �

�∗
k [�∗] − 1

2�∗ · R�
k · �∗. (38)

The mapping between the non-canonical and canonical average effective actions is obtained
from the mapping (33) between the Helmholtz free energies. A straightforward calculation
yields

��∗
k [�∗] = ��

k [�] − 1

2
� · P �

0 · � − � · δ��
k

δ�
, (39a)

�∗ = P �
0 · � +

δ��
k

δ�
, (39b)

or equivalently, from the ‘star world’ to the ‘non-star world’

��
k [�] = ��∗

k [�∗] − δ��∗
k

δ�∗ · �∗ − 1

2

δ��∗
k

δ�∗ · P �
0 · δ��∗

k

δ�∗ , (40a)

� = −δ��∗
k

δ�∗ . (40b)

These expressions are quite complicated and, despite some efforts, we were unable to derive
from them the mapping between the vertices �

�(n)
k and �

�∗(n)
k for a general ‘n’ (quite nice-

looking relations are easily obtained for n � 3 but cannot be generalized in a straightforward
manner for higher ‘n’).

An instructive consequence of equations (39) and (40) is the derivation of the initial
condition for ��∗

k [�∗]. From expression (25) of ��
�[�] combined with equation (39b) one

gets �∗ = δ�R/δ� (≡ JR if you wish).
From (39a) one then infers

��∗
� [�∗] = �R[�] − JR · �,

= −WR [JR] ,

= S�[�∗], (41)

which is indeed the expected result [10, 13, 14].

10



J. Phys. A: Math. Theor. 42 (2009) 225004 J-M Caillol

Our final task is to relate the flows of the effective average actions in the canonical and
non-canonical theories. The result is quite remarkable and reads as

∂k�
�∗
k [�∗]|�∗ = ∂k�

�
k [�]|�,

with � = −δ��∗
k

δ�∗ or �∗ = P �
0 · � +

δ��
k

δ�
. (42)

There are several proofs of this result, one of them being to start from equation (39). Taking
its partial derivative with respect to ‘k’ at fixed �∗ yields

∂k�
�∗
k [�∗]|�∗ = ∂k�

�
k [�]|�∗ + � · P �

0 · ∂k�|�∗ − �∗ · ∂k�|�∗ ,

= ∂k�
�
k [�]|� + ∂k�|�∗ ·

{
δ��

k

δ�
+ P �

0 · � − �∗
}

,

= ∂k�
�
k [�]|�QED, (43)

where we made use of (39b) to obtain the last line.
A second, more direct proof of equation (42) gives us the opportunity to write the well-

known WEM equation for ��∗
k which we present with simplified notations as

∂k�
�∗
k [�∗]|�∗ = 1

2∂kR
�
k (1, 2)W

�∗(2)
k (1, 2) + ∂k lnNP �

k
. (44)

The second contribution to the rhs of (44) involves the normalization NP �
k

; it is independent
of the field and for that reason generally not mentioned in the literature; here, however, we
need it to complete our proof. Clearly

∂k lnNP �
k

= − 1
2 〈ϕ(1)ϕ(2)〉P �

k
∂kR

�
k (1, 2)

= − 1
2P �

k (1, 2)∂kR
�
k (1, 2), (45)

where the brackets denote a Gaussian average (see appendix A) and we made use of Wick’s
theorem. To go further we remark that ∂kR

�
k = −R�

k · ∂kP
�
k · R�

k and also make use of the
relations between canonical and non-canonical Green functions (cf equations (35)). This gives
us

∂k�
�∗
k [�∗]|�∗ = − 1

2∂kP
�
k (1, 2)

{
W

�(2)
k (1, 2) + R�

k (1, 2)
}

. . . − 1
2P �

k (1, 2)∂kR
�
k (1, 2)

= − 1
2∂kP

�
k (1, 2)W

�(2)
k (1, 2)

= 1
2∂kP

k
0 (1, 2)W

�(2)
k (1, 2), (46)

which indeed is equal to ∂k�
�
k [�]|� (cf equation (24)).

5. The RG hierarchy

5.1. Smooth cut-off

In this section we comment on the flow equation (24) for the average effective action of our non-
canonical KSSHE-like field theory. Henceforth we consider only homogeneous systems, then,
as usual, in momentum space, we factor out and evaluate the momentum conserving δ function
so n-point correlation functions �̃

�(n)
k (q1, . . . , qn) are defined only when q1 + · · · + qn = 0.

More precisely one has for instance

�̃
�(n)
k (q1, . . . , qn) = δ̂(q1 + · · · qn)

∫
x1...xn

exp(i(q1x1 + · · · qn−1xn−1))�
�(n)
k (x1, . . . , xn−1, 0),

(47)
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where δ̂(q) � (2π)dδd(q). In addition, in two-point functions, we solve q1 = −q2 = q

and recognize that they are functions only of q2 and we write them �̃
�(2)
k (q2). In the

same vein we denote the Fourier transform of the full propagator at scale ‘k’ W̃
�(2)
k (q2) ≡

1
/(

�̃
�(2)
k (q2)+P k

0 (q2)
)
. For a uniform background field � equation (24) can thus be rewritten

as

∂kU
�
k [�] = 1

2

∫
q

∂kP
k
0 (q2)

�̃
�(2)
k [�; q2] + P k

0 (q2)
, (48)

where we have introduced the potential U�
k = ��

k

/
V , where V is the volume.

To paraphrase Delamotte [15] this beautiful equation is exact and thus horribly
complicated. Mathematically it is a functional parabolic partial derivative equation since
both ��

k [�] and �̃
�(2)
k [�; q2] are functionals of �. As for canonical theories [14] one can, by

functional derivation with respect to the field, deduce from equation (48) an infinite hierarchy
of equations for the effective vertices �̃

�(n)
k (q1, . . . , qn). These equations are better represented

graphically with the help of Feynman diagrams. The latter will be built from the vertices

q1q2

qn. . .
= �̃

�(n)
k (q1, . . . , qn) (n � 2), (49a)

the propagator

q −q
= W̃

�(2)
k (q2), (49b)

and the insertion

q −q
= ∂kP̃

k
0 (q2). (49c)

For instance (48) takes the form

∂kU
�
k = 1

2

q

−q

. (50)

Since

(2π)d δ�̃
�(n)
k (q1, . . . , qn)

δ�̃−q

= �̃
�(n+1)
k (q1, . . . , qn, q), (51a)

applying the functional δ/δ�̃−q on a vertex with ‘n’ legs gives rise to a vertex with ‘n+1’ legs
while, on a propagator, this operation creates a vertex with three legs since

(2π)d δW̃
�(2)
k (q1, q2)

δ�̃−q

= −W̃
�(2)
k (q1,−r1)�̃

�(3)
k (r1, r2, q2)W̃

�(2)
k (−r2,−q2). (51b)

With these rules in mind one easily obtains the first equations of the hierarchy

∂k�̃
�,(1)
k (0) = ∂k

0
=

1

2

0
q

-q

-q

q

= −1

2

∫
q

�̃
�(3)
k (0, q,−q)W̃

�(2)
k (q2)∂kP̃

k
0 (q2), (52)

12
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and

∂kΓ
Λ (2)
k (p2) = ∂k

p −p

= −1

2 p −p

q

−q

−q

q
+

p q −p−q

p + q−p− q

−q q

= − 1

2

∫
q

�̃
�(4)
k (p, q,−q,−p)W̃

�(2)
k (q)2∂kP̃

k
0 (q2)

+
∫

q

�̃
�(3)
k (p, q,−p − q)�̃

�(3)
k (−q,−p, p + q)

× W̃
�(2)
k (q)2W̃

�(2)
k (p + q)∂kP̃

k
0 (q2), (53)

and so on. These tower of equations has exactly the same structure for the canonical and
non-canonical theories with the replacement R�

k → P k
0 . Flow equations for �̃

�(n)
k of higher

orders are obtained in the same vein by making use ad libitum of the diagrammatic rules which
are deduced from equations (51). Some comments are in order.

• The equation for ∂k�̃
�(n)
k involves inter alias the proper vertex ∂k�̃

�(n+1)
k and ∂k�̃

�(n+2)
k ,

therefore the hierarchy never closes. Possible approximations consist in enforcing a
closure at some order n [14, 15, 19].

• A little thought reveals that the one-loop structure is present at each order n of the hierarchy
and therefore only one integral on internal variables survives.

• All the expressions for the odd ∂k�̃
�(2n+1)
k include diagrams with at least one odd vertex

�̃
�(2m+1)
k (m � n). Therefore, if at some scale k all the odd �̃

�(2n+1)
k happen to vanish

they will remain exactly zero at smaller scales k.

5.2. Sharp cut-off

To extract the limit ε → 0 of the flow equations one makes use of the ‘little lemma’ of Morris
[13] which states that, for ε → 0

δε(q, k)f (	ε(q, k), k) → δ(q − k)

∫ 1

0
dt f (t, q), (54)

provided that the function f (	ε(q, k), k) is continuous at k = q in the limit ε → 0, which is
the case here. Applying lemma (54) to equation (48) one obtains the flow of the potential

∂kU
�
k [�] = 1

2
kd−1 Sd

(2π)d
ln

(
1 +

P0(q
2)

�
�(2)
k [�; q2]

)
, (55)

where Sd = 2πd/2�(d/2) is the area of the d-dimensional sphere of radius ‘1’. The flow
equations for the proper vertices �̃

�(n)
k of order n � 1 can also be obtained in the sharp cut-off

limit from those of section 5.1 by applying the ‘little lemma’. One finds that these equations
are identical to those obtained for the first time nearly 25 years ago by Parola and Reatto in
the context of the theory of liquids [16, 17]. Equation (55) is still older and was obtained in
the early ages of the RG [4, 6, 7].
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6. Conclusion

The main result of this paper is contained in equation (14) which states that in a non-canonical,
KSSHE-like field theory the Wilsonian action S�

k of the renormalization group coincides with
the Helmholtz free energy of the k-system. The average effective action ��

k can thus be
obtained as a Legendre transform of S�

k (up to a trivial quadratic form). We have derived the RG
flow equations for S�

k and ��
k and proved some important properties such as parametrization

invariance. The exact mapping of section 4 which relates the non-canonical and canonical
theories shows interesting features and can also be seen as a practical method to build a
KSSHE-like theory from a standard one.

As an illustration let us consider the theory of liquids. Let the fluid be made of
identical hard spheres (HS) of diameter σ with additional isotropic pair interactions v(rij )

(rij = |xi − xj |, xi is the position of particle ‘i’). Since v(r) is an arbitrary function of r in
the core, i.e. for r � σ , one can assume that v(r) has been regularized in the core in such
a way that its Fourier transform ṽq is a well-behaved function of q and that v(0) is a finite
quantity. We denote by � the domain occupied by the molecules of the fluid. For convenience
� is supposed to be a cube of side L and periodic boundary (PB) conditions are imposed so
that the volume of � is V = Ld . The fluid is at equilibrium in the grand canonical (GC)
ensemble, β = 1/kBT is the inverse temperature (kB is Boltzmann’s constant) and μ the
chemical potential. In addition the particles are subject to an external potential ψ(x) and we
will denote by ν(x) = β(μ − ψ(x)) the dimensionless local chemical potential. We stick
to notations usually adopted in standard textbooks devoted to the theory of liquids (see, e.g.,
[37]) and thus denote by w0(r) = −βv(r) minus the dimensionless pair interaction. Moreover
we restrict ourselves to the case of attractive interactions, i.e. such that w̃0(q) > 0 for all q.

In a given GC configuration C ≡ (N; x1 · · · xN) of the grand canonical ensemble the
microscopic density of particles at point x reads ρ̂(x|C) = ∑N

i=1 δd(x − xi) and the grand
canonical partition function (GCPF) � [ν] which encodes all the physics of the model at
equilibrium is defined as [37]

�[ν] = Tr[exp(−βHGC)],

−βHGC = −βVHS[C] +
1

2
ρ̂ · w0 · ρ̂ + ν · ρ̂,

Tr [· · ·] =
∞∑

N=0

1

N !

∫
�

d1 . . . dn . . . ,

(56)

where i ≡ xi and di ≡ ddxi . In equation (56) βVHS [C] denotes the HS contribution to the
configurational energy (i.e. +∞ if there is an overlap of spheres, 0 otherwise) and ν = ν + νS

where νS = −w0(0)/2 is β times the self-energy of a particle. For a given volume V and a
given inverse temperature β,� [ν] is a log-convex functional of the local chemical potential
ν(x) [36, 38].

We now perform a Hubbard–Stratonovich transform to get the KSSHE representation
[27]

� [ν] = N−1
w�

0

∫
Dϕ exp

(
−1

2
ϕ · w�−1

0 ϕ + ln �HS

[
ν − 1

2
w�

0 (0) + ϕ

])
, (57)

where w̃�
0 (q) = C(q/�)w̃0(q) and Dϕ is Wegner’s measure (cf equation (A.2) of appendix

A). We stress that C(x) is the same UV cut-off function we met in section 2; we have used
the fact that for � ∼ 1/σ,w0(r) and w�

0 (r) differ only but inside the core. In equation (57)

14
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�HS
[
ν − w�

0 (0)/2 + ϕ
]

denotes of course the GCPF of bare hard spheres subject to the local
chemical potential ν −w�

0 (0)/2+ϕ. Comparing (57) with equation (9) we note the one-to-one
correspondence WR ←→ ln �HS and w ←→ P . Pair potentials correspond to propagators
and WR is the grand potential of the HS fluid. Note that massive propagators in field theory
correspond to attractive Yukawa pair potentials in liquid theory. The RG construction detailed
in the core of the paper can be redone (the slight modification due to the introduction of
the self-energy w�

0 (0) in equation (57) does not spoil the result). The k-system can thus be
identified with a fluid of hard spheres interacting through the pair potentials

w̃�
k (q) = (C(q/�) − C(q/k)) w̃0(q). (58)

In direct space w�
k (r) is a short range potential equal to w0(r) for 1/� ≡ σ < r < 1/k and

equal to 0 for r > 1/k, precisely the kind of potential used in numerical simulations involving
boxes of side L = 1/k. This supports a real space RG interpretation where, at scale ‘k’, W�

k

is the Helmholtz free energy of a ‘block’ of size 1/k.
Generalizations to repulsive (including Coulomb interactions for instance) or even not

definite pair potentials are possible, a detailed analysis will be given elsewhere. Of course this
sketchy discussion of the KSSHE theory for a liquid could also be extended in the same vein
and with identical conclusions to many other models of condensed matter physics such as the
lattice gas or the Ising model.
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Appendix A. Gaussian measures and integrals

In this appendix we give some properties of Gaussian integrals used in the main text. Let us
consider a real scalar field ϕ(x) defined in a cube Cd of side L and volume V = Ld . We assume
periodic boundary conditions, i.e. we restrict ourselves to fields which can be expressed as a
Fourier series,

ϕ(x) = 1

V

∑
q∈�

ϕ̃q eiq·x, (A.1)

where � = (2π/L)Zd is the reciprocal cubic lattice (Z set of integers). The reality of ϕ

implies that, for q �= 0 ϕ̃−q = ϕ̃
q , where the star means complex conjugation. Following

Wegner [2] we define the normalized functional measure Dϕ as

Dϕ ≡
∏
q∈�

dϕ̃q√
2πV

(A.2a)

dϕ̃q dϕ̃−q = 2d Re ϕ̃qd Im ϕ̃q for q �= 0. (A.2b)

Equation (A.2) can be conveniently rewritten as

Dϕ = dϕ0√
2πV

∏
q∈�

d Re ϕ̃qd Im ϕ̃q

πV
, (A.3)
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where the sum in the rhs runs over only the half �∗ of all the vectors of the reciprocal lattice
� (for instance those with qx � 0). With these definitions one has

Nw ≡
∫

Dϕ exp

(
−1

2
ϕ · w−1 · ϕ

)
,

= exp

⎛⎝1

2

∑
q∈�

ln w̃(q)

⎞⎠ L→∞−−−−→ exp

(
V

2

∫
q

ln w̃(q)

)
, (A.4)

where w is definite and positive.
We define the Gaussian measure dμw[ϕ] = N−1

w Dϕ and the Gaussian average 〈F[ϕ]〉w =∫
dμw[ϕ]F[ϕ] and recall the well-known Wick’s theorem

〈ϕ(x1) · · · ϕ(xn)〉w =

⎧⎪⎨⎪⎩
0 if n odd,∑

pairs

w(xi1 , xi2) · · · w(xin−1, xin ) if n even. (A.5)

From Wick’s theorem one deduces the important result

〈exp (J · ϕ)〉w = exp
(

1
2J · w · J

)
, (A.6a)

〈exp (iJ · ϕ)〉w = exp
(− 1

2J · w · J
)
, (A.6b)

where J (x) is a real scalar field. Another consequence of Wick’s theorem (A.5) is the following
identity involving n Gaussian measures dμi

w[ϕi], i = 1, . . . , n, which is sometimes referred
to as the Bogolioubov theorem∫

dμw1+···+wn
[ϕ]F[ϕ] =

∫ n∏
i=1

dμwi
[ϕi]F[ϕ1 + · · · + ϕn], (A.7)

where F[ϕ] is some arbitrary functional of the field ϕ.
The last formal consequence of Wick’s theorem that we need mention is∫

dμw[ϕ]F[ϕ + ϕ0] = exp(D)F[ϕ0], (A.8a)

where the functional Laplacian operator D is defined as

D ≡ 1

2

∫
x,y

w(x, y)
δ

δϕ(x)

δ

δϕ(y)
. (A.8b)

Appendix B. KSSHE theory

We review some properties of a system described by a non-canonical KSSHE partition function

Z�[J ] = 1

NP �
0

∫
Dϕ exp(−H[J, ϕ]), (B.1a)

H[J, ϕ] = 1

2
ϕ · R�

0 · ϕ − WR [J + ϕ] , (B.1b)

more details will be found in [27] and [33]. In fact, we have already studied the Green
functions of the model in section 4.2 since Z�[J ] is nothing but the special case Z�

k=0[J ]. In
particular

��[J ; 1] ≡ W
�(n=1)
0 (J ; 1) = R�

0 (1, 2) · 〈ϕ(2)〉
16
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and the correlations of higher order are given by equations (35) (with k = 0). Moreover we
also have for N � 2

Z
(n)
� [J ; 1, . . . , n] = Z−1

�

δnZ�

δJ (1), . . . , δJ (n)

= 〈Z(n)
R [J + ϕ; 1, . . . , n]

〉
, (B.2)

which is not a very useful result except for the case n = 1 which gives us the exact relation

�� [J ; 1] = 〈�R [J + ϕ; 2]〉 = R�
0 (1, 2)〈ϕ(2)〉,

from which we can guess the MF equation

ϕMF(1) = P �
0 (1, 2)�R[J + ϕMF ; 2], (B.3)

which we derive again now on more solid grounds.
The MF approximation is defined as usual as

Z�,MF = exp(−H[J, ϕMF ]), (B.4a)

δH
δϕMF

∣∣∣∣
J

= 0. (B.4b)

Clearly the stationarity condition (B.4b) coincides with equation (B.3). A short calculation
will show that the MF Gibbs free energy is given by [27]

��,MF [�] = �R[�] − 1
2� · P �

0 · �. (B.5)

The 2-point vertex function and its inverse are then easily derived from (B.5)

�
(2)
�,MF = �

(2)
R − P �

0 ,

W
(2)
�,MF = (1 − W

(2)
R · P �

0

)−1 · W
(2)
R .

To see that ��,MF [�] is a rigorous upper bound to ��[�] we rewrite

Z�[J ] = 〈exp WR[J + ϕ]〉P �
0
, (B.6)

where the brackets denote a Gaussian average (see appendix A). Applying Young inequalities
(4) yields

Z�[J ] � 〈exp((J + ϕ) · � − �R[�])〉P �
0

∀J,∀�,

� exp(−�R[�] + J · �)〈exp(� · ϕ)〉P �
0

∀J,∀�,

� exp
(−�R[�] + J · � + 1

2� · P �
0 �
) ∀J,∀�. (B.7)

Taking the log and making use of (B.5)

W�[J ] � −��,MF [�] + J · � ∀J,∀�,

and therefore, for all �

��,MF [�] � sup
J

{J · � − W�[J ]} ≡ ��[�],

QED. It is obvious that we can extend these result to the k-systems and therefore one has, for
any k

�
�

k,MF [�] = �R[�] − 1
2� · P �

k · � � �
�

k [�], (B.8)

from which it will be easy for the reader to deduce that for all 0 � k � � one has the rigorous
bound

��
k [�] � ��,MF [�] ∀�. (B.9)
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